Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds

Zixuan Zhang

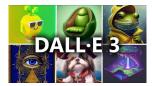
Georgia Tech ISyE

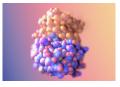
Oct. 2024

Joint Work with

Kaixuan Huang Mengdi Wang Princeton Univ. Tuo Zhao Georgia Tech Minshuo Chen Northwestern Univ.

Transformative Power of Diffusion Models





DALL-E 3 by OpenAl Image Generation

Sora by OpenAl Video Generation

RFdiffusion by UW Protein Design

Diffusion Model in Generation

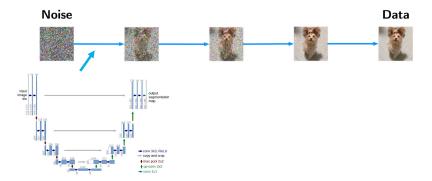
- Generate samples from noise.
- Sequential transformation.

(Sohl-Dickstein et. al., 2015, Song and Ermon, 2019, Ho et. al., 2020)

4/17

Diffusion Model in Generation

- Generate samples from noise.
- Sequential transformation.

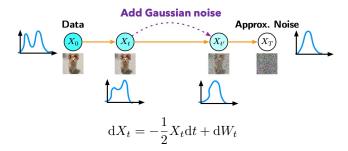


(Sohl-Dickstein et. al., 2015, Song and Ermon, 2019, Ho et. al., 2020)

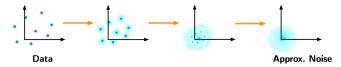
4/17

Forward Process - Noise Corruption

Noise corruption process

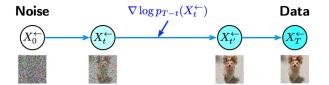


Data distribution transformed into centered Gaussian



Backward Process - Sample Generation

Time reversal in distribution

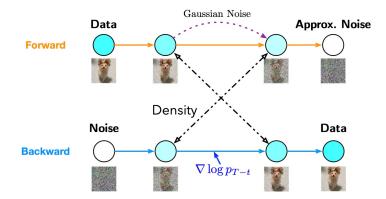


Forward Process
$$dX_t = -\frac{1}{2}X_t dt + dW_t$$

Backward Process $dX_t^{\leftarrow} = \left[\frac{1}{2}X_t + \nabla \log p_{T-t}(X_t^{\leftarrow})\right] dt + d\bar{W}_t$
Score function

(Anderson, 1982; Haussmann and Pardoux, 1986)

Forward and Backward Coupling



7/17

Success Despite Curse of Dimensionality

Sample size (Niles-Weed and Berthet, 2022). #samples $\approx \epsilon^{-\frac{D+2s}{s+1}}$.

ImageNet resolution: $D = 224 \times 224 \times 3$. #samples > $10^{224 \times 224}$.

However, diffusion models are trained with < 7B samples (Schuhmann et. al., 2022).

 ϵ – error level; D – data dimensional; s – smoothness.

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds

Success Despite Curse of Dimensionality

Sample size (Niles-Weed and Berthet, 2022). #samples $\approx e^{-\frac{D+2s}{s+1}}$.

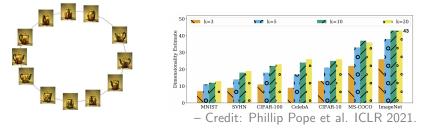
ImageNet resolution: $D = 224 \times 224 \times 3$. #samples $\geq 10^{224 \times 224}$.

However, diffusion models are trained with < 7B samples (Schuhmann et. al., 2022).

 ϵ – error level; D – data dimensional; s – smoothness.

8/17

Good News: Low-Dimensional Data Structures



Intrinsic dimension $d \ll$ Ambient dimension D.

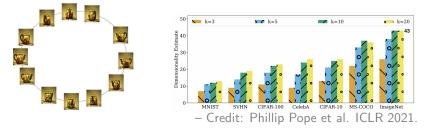
Deep neural networks are adaptive in supervised learning

(Chen et. al., 2022; Liu et. al., 2023; Ji et. al., 2023).

Sample complexity scales with *d* instead of *D*.

Can we establish the **sample complexity** of diffusion models, free of curse of ambient dimensionality?

Good News: Low-Dimensional Data Structures



Intrinsic dimension $d \ll$ Ambient dimension D.

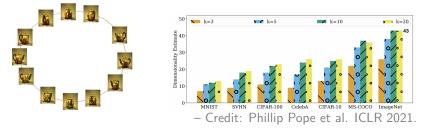
 Deep neural networks are adaptive in supervised learning (Chen et. al., 2022; Liu et. al., 2023; Ji et. al., 2023).

Sample complexity scales with d instead of D.

Can we establish the **sample complexity** of diffusion models, free of curse of ambient dimensionality?

9/17

Good News: Low-Dimensional Data Structures



Intrinsic dimension $d \ll$ Ambient dimension D.

Deep neural networks are adaptive in supervised learning

(Chen et. al., 2022; Liu et. al., 2023; Ji et. al., 2023).

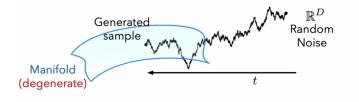
Sample complexity scales with *d* instead of *D*.

Can we establish the **sample complexity** of diffusion models, free of curse of ambient dimensionality?

However...

Prior arts are not enough to explain diffusion models.

- Diffusion model is unsupervised learning.
- Diffusion model is a dynamic system, implemented in \mathbb{R}^D .



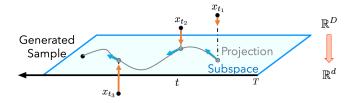
Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 10/17

Simple but Insightful: Linear Subspace

The score function consists of two components, on-subspace score and orthogonal score (Chen et. al., 2023).

$$\nabla \log p_t(x) = A \nabla \log p_t^z(A^\top x) - \frac{1}{1 - e^{-t}} (I_D - AA^\top) x$$

On-subspace Orthogonal



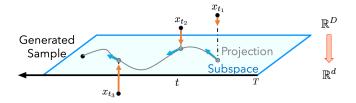
Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 11/17

Simple but Insightful: Linear Subspace

The score function consists of two components, on-subspace score and orthogonal score (Chen et. al., 2023).

$$\nabla \log p_t(x) = \mathbf{A} \nabla \log p_t^z(\mathbf{A}^\top x) - \frac{1}{1 - e^{-t}} (I_D - A A^\top) x$$

On-subspace Orthogonal



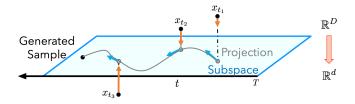
Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 11/17

Simple but Insightful: Linear Subspace

The score function consists of two components, on-subspace score and orthogonal score (Chen et. al., 2023).

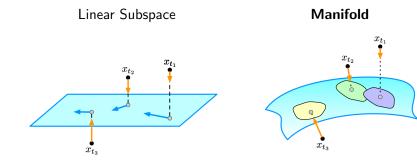
$$\nabla \log p_t(x) = A \nabla \log p_t^z(A^\top x) - \frac{1}{1 - e^{-t}} (I_D - AA^\top) x$$

On-subspace Orthogonal



Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 11/17

Delve into Manifolds

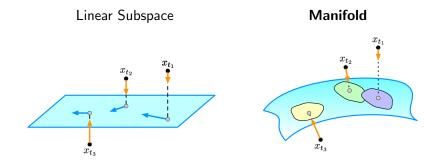


Score = On-subspace + Orthogonal

Score = On-manifold + Orthogonal + interaction-term

Curvature dependent!

Delve into Manifolds

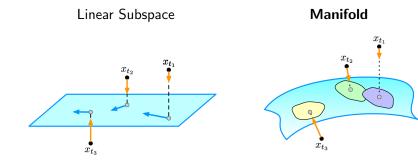


Score = On-subspace + Orthogonal

Score = On-manifold + Orthogonal + interaction-term

Curvature dependent!

Delve into Manifolds



Score = On-subspace + Orthogonal

Score = On-manifold + Orthogonal + interaction-term

Curvature dependent!

Score decomposition via projection Π_t onto manifold:

$$\nabla \log p_t(x) = s_{\mathcal{M}} \left(\Pi_t(x); t \right) - \frac{1}{1 - e^{-t}} \left(x - \Pi_t(x) \right) + \text{interaction.}$$

On-Manifold Orthogonal

Orthogonal score **blows up** when time approaches zero.

Score decomposition via projection Π_t onto manifold:

$$\nabla \log p_t(x) = s_{\mathcal{M}} \left(\Pi_t(x); t \right) - \frac{1}{1 - e^{-t}} \left(x - \Pi_t(x) \right) + \text{interaction.}$$

On-Manifold Orthogonal

Orthogonal score **blows up** when time approaches zero.

Score decomposition via projection Π_t onto manifold:

$$\nabla \log p_t(x) = s_{\mathcal{M}} \left(\Pi_t(x); t \right) - \frac{1}{1 - e^{-t}} \left(x - \Pi_t(x) \right) + \text{interaction.}$$

On-Manifold Orthogonal

• Orthogonal score **blows up** when time approaches zero.

Only holds for inputs near manifold.

Score decomposition via projection Π_t onto manifold:

$$\nabla \log p_t(x) = s_{\mathcal{M}} \left(\Pi_t(x); t \right) - \frac{1}{1 - e^{-t}} \left(x - \Pi_t(x) \right) + \text{interaction.}$$

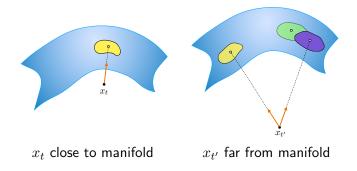
On-Manifold Orthogonal

• Orthogonal score **blows up** when time approaches zero.

Only holds for inputs near manifold.

Score Behavior for "Faraway" Inputs

- Score locates corrupted data to nearby neighborhoods.
- For each neighborhood, score consists of on tangent-space score and orthogonal score.



Distribution Recovery

Theorem

Assume P_0 is supported on a *d*-dimensional manifold with $d \ll D$. 1. Score network (overparameterized) converges at the rate

$$\widetilde{\mathcal{O}}\left(\left[\operatorname{curv}(\mathcal{M})+1\right]n^{-\frac{s}{d+2s}}\right).$$

2. Estimated distribution converges at the rate

$$W_1(\widehat{P}, P_0) = \widetilde{\mathcal{O}}\left(\left[\operatorname{curv}(\mathcal{M}) + 1 \right] n^{-\frac{s+1}{d+2s}} \right)$$

Here s is the smoothness of P_0 .

- Adaptive to data intrinsic structures.
- Efficient in learning data distributions.
 Matches the minimax rate (Tang and Yang, 2022).

Summary

Score behavior.

- NN score estimation.
- Sample complexity of distribution estimation.

Reference

[1] Chen, M., Huang, K., Zhao, T., and Wang, M. "Score approximation, estimation and distribution recovery of diffusion models on low-dimensional data", *In International Conference on Machine Learning*, 2023.

[2] M. Chen, H. Jiang, W. Liao and Tuo Zhao, "Nonparametric Regression on Low-Dimensional Manifolds using Deep ReLU Networks", *IMA Information and Inference*, 2021.

 [3] Zhang, K., Zhang, Z., Chen, M., Takeda, Y., Wang, M., Zhao, T., and Wang, Y.
 X. "Nonparametric Classification on Low Dimensional Manifolds using Overparameterized Convolutional Residual Networks", arXiv preprint, 2023.

[4] Liu, H., Chen, M., Zhao, T. and Liao, W. "Besov function approximation and binary classification on low-dimensional manifolds using convolutional residual networks", *In International Conference on Machine Learning*, 2021.

