
Sample Complexity of Diffusion Models
for Learning Distributions

on Low Dimensional Manifolds

Zixuan Zhang

Georgia Tech ISyE

Oct. 2024



Joint Work with

Kaixuan Huang Mengdi Wang Tuo Zhao Minshuo Chen
Princeton Univ. Georgia Tech Northwestern Univ.

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 2/17



Transformative Power of Diffusion Models
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Diffusion Model in Generation

Generate samples from noise.

Sequential transformation.

(Sohl-Dickstein et. al., 2015, Song and Ermon, 2019, Ho et. al., 2020)
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Forward Process - Noise Corruption
Noise corruption process

dXt = −1

2
Xtdt+ dWt

Data distribution transformed into centered Gaussian
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Backward Process - Sample Generation

Time reversal in distribution

Forward Process dXt = −1

2
Xtdt+ dWt

Backward Process dX←t =

[
1

2
Xt +∇ log pT−t(X

←
t )

]
dt+ dW̄t

Score function

(Anderson, 1982; Haussmann and Pardoux, 1986)
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Forward and Backward Coupling
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Success Despite Curse of Dimensionality

Sample size (Niles-Weed and Berthet, 2022).

#samples ≍ ϵ−
D+2s
s+1 .

ImageNet resolution: D = 224× 224× 3.

#samples ≥ 10224×224.

However, diffusion models are trained with < 7B samples
(Schuhmann et. al., 2022).

ϵ – error level; D – data dimensional; s – smoothness.
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Good News: Low-Dimensional Data Structures

Figure 3. Two dimensional embedding of
N =400 images of a rotating teapot, obtained
by SDE using k = 4 nearest neighbors. For
this experiment, the teapot was rotated 360
degrees; the low dimensional embedding is
a full circle. A representative sample of im-
ages are superimposed on top of the embed-
ding.

Fig. 4 was generated from the same data set of images;
however, for this experiment, only N = 200 images were
used, sampled over 180 degrees of rotation. In this case, the
eigenvalue spectrum from SDE detects that the images lie
on a one dimensional curve (see Fig. 7), and the d =1 em-
bedding in Fig. 4 orders the images by their angle of rota-
tion.
Fig. 5 shows the results of SDE on a data set ofN =1000

images of faces. The images contain different views and
expressions of the same face. The images have 28 × 20
grayscale pixels, giving rise to inputs with D = 560 di-
mensions. The plot in Fig. 5 shows the first two dimensions
of the embedding discovered by SDE, using k = 4 nearest
neighbors. Interestingly, the eigenvalue spectrum in Fig. 7
indicates that most of the variance of the spectral embed-
ding is contained in the first three dimensions.
Fig. 6 shows the results of SDE applied to another data

set of images. In this experiment, the images were a subset
of N = 638 handwritten TWOS from the USPS data set of
handwritten digits [10]. The images have 16×16 grayscale
pixels, giving rise to inputs with D = 256 dimensions. In-
tuitively, one would expect these images to lie on a low di-
mensional manifold parameterized by such features as size,
slant, and line thickness. Fig. 6 shows the first two dimen-
sions of the embedding obtained from SDE, with k=4 near-
est neighbors. The eigenvalue spectrum in Fig. 7 indicates a
latent dimensionality significantly larger than two, but still
much smaller than the actual number of pixels.

Figure 5. Top: two dimensional embedding of
N = 1000 images of faces, obtained by SDE
using k = 4 nearest neighbors. Representa-
tive faces are shown next to circled points.
Bottom: eigenvalues of SDE and PCA on this
data set, indicating their estimates of the un-
derlying dimensionality. The eigenvalues are
shown as a percentage of the trace of the out-
put Gram matrix for SDE and the trace of the
input Gram matrix for PCA. The eigenvalue
spectra show that most of the variance of
the nonlinear embedding is confined to many
fewer dimensions than the variance of the lin-
ear embedding.

5. Discussion

The last few years have witnessed a number of de-
velopments in manifold learning. Recently proposed al-
gorithms include Isomap [19], locally linear embedding
(LLE) [14, 15], hessian LLE (hLLE) [8], and Laplacian
eigenmaps [1]; there are also related algorithms for clus-
tering [17]. All these algorithms share the same basic struc-
ture as SDE, consisting of three steps: (i) computing neigh-
borhoods in the input space, (ii) constructing a square ma-
trix with as many rows as inputs, and (iii) spectral embed-
ding via the top or bottom eigenvectors of this matrix. SDE
is based on a rather different geometric intuition, however,
and as a result, it has different properties.
Comparing the algorithms, we find that each one at-

tempts to estimate and preserve a different geometric signa-

– Credit: Phillip Pope et al. ICLR 2021.

Intrinsic dimension d ≪ Ambient dimension D.

Deep neural networks are adaptive in supervised learning
(Chen et. al., 2022; Liu et. al., 2023; Ji et. al., 2023).

Sample complexity scales with d instead of D.

Can we establish the sample complexity of diffusion models,
free of curse of ambient dimensionality?
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However...

Prior arts are not enough to explain diffusion models.

Diffusion model is unsupervised learning.

Diffusion model is a dynamic system, implemented in RD.
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Simple but Insightful: Linear Subspace

The score function consists of two components, on-subspace
score and orthogonal score (Chen et. al., 2023).

∇ log pt(x) = A∇ log pzt (A
⊤x)− 1

1− e−t
(ID −AA⊤)x

On-subspace Orthogonal

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 11/17



Simple but Insightful: Linear Subspace

The score function consists of two components, on-subspace
score and orthogonal score (Chen et. al., 2023).

∇ log pt(x) = A∇ log pzt (A
⊤x)− 1

1− e−t
(ID −AA⊤)x

On-subspace Orthogonal

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 11/17



Simple but Insightful: Linear Subspace

The score function consists of two components, on-subspace
score and orthogonal score (Chen et. al., 2023).

∇ log pt(x) = A∇ log pzt (A
⊤x)− 1

1− e−t
(ID −AA⊤)x

On-subspace Orthogonal

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 11/17



Delve into Manifolds

Linear Subspace Manifold

Score = On-subspace+Orthogonal Score = On-manifold+Orthogonal
+ interaction-term

Curvature dependent!
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Score Decomposition

Score decomposition via projection Πt onto manifold:

∇ log pt(x) = sM (Πt(x); t)−
1

1− e−t
(x−Πt(x)) + interaction.

On-Manifold Orthogonal

Orthogonal score blows up when time approaches zero.

Only holds for inputs near manifold.
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Score Behavior for “Faraway” Inputs

Score locates corrupted data to nearby neighborhoods.

For each neighborhood, score consists of on tangent-space
score and orthogonal score.

<latexit sha1_base64="bwHp+qFx9hd3MijEwgujvMdTi/0=">AAACAnicbVC7TsMwFL3hWcqrwMhi0SKYqqRDYaxgYSwSfUhtVDmO01p1nMh2EFXUjS9ghS9gQ6z8CB/Af+C0GWjLkSwdnXOv7vHxYs6Utu1va219Y3Nru7BT3N3bPzgsHR23VZRIQlsk4pHselhRzgRtaaY57caS4tDjtOONbzO/80ilYpF40JOYuiEeChYwgrWRupWnQaovppVBqWxX7RnQKnFyUoYczUHpp+9HJAmp0IRjpXqOHWs3xVIzwum02E8UjTEZ4yHtGSpwSJWbzvJO0blRfBRE0jyh0Uz9u5HiUKlJ6JnJEOuRWvYy8T+vl+jg2k2ZiBNNBZkfChKOdISyzyOfSUo0nxiCiWQmKyIjLDHRpqKFK77Kok1NL85yC6ukXas69Wr9vlZu3OQNFeAUzuASHLiCBtxBE1pAgMMLvMKb9Wy9Wx/W53x0zcp3TmAB1tcvFt6X8g==</latexit>xt→
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xt close to manifold xt′ far from manifold
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Distribution Recovery

Theorem

Assume P0 is supported on a d-dimensional manifold with d ≪ D.
1. Score network (overparameterized) converges at the rate

Õ
(
[curv(M) + 1]n− s

d+2s

)
.

2. Estimated distribution converges at the rate

W1(P̂ , P0) = Õ
(
[curv(M) + 1]n− s+1

d+2s

)
.

Here s is the smoothness of P0.

Adaptive to data intrinsic structures.

Efficient in learning data distributions.
Matches the minimax rate (Tang and Yang, 2022).

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 15/17



Summary

Score behavior.

NN score estimation.

Sample complexity of distribution estimation.
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Thank You!


