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Transformative Power of Diffusion Models
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Diffusion Model in Generation

m Generate samples from noise.

m Sequential transformation.

Noise Data

(Sohl-Dickstein et. al., 2015, Song and Ermon, 2019, Ho et. al., 2020)
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Diffusion Model in Generation

m Generate samples from noise.

m Sequential transformation.

Noise Data

= copy and crop.
§max pool 22
Hupcon 22
> conv 11

(Sohl-Dickstein et. al., 2015, Song and Ermon, 2019, Ho et. al., 2020)
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Forward Process - Noise Corruption
m Noise corruption process
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Add Gaussian noise
oA - Approx. Noise
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dX; = —§Xtdt + dW;

m Data distribution transformed into centered Gaussian
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Data Approx. Noise
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-
Backward Process - Sample Generation

m Time reversal in distribution

Noise Viegpr—+(X;) Data

T 1

1
Forward Process dX; = —§Xtdt + dW;

Backward Process dX;~

1 -

Score function

(Anderson, 1982; Haussmann and Pardoux, 1986)
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Forward and Backward Coupling

Gaussian Noise .
Data o ST SR - Approx. Noise

Forward O

Backward O
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Success Despite Curse of Dimensionality

m Sample size (Niles-Weed and Berthet, 2022).

_ D+2s
#samples < ¢ s+l .

m ImageNet resolution: D = 224 x 224 x 3.

Hsamples > 10224x224,

m However, diffusion models are trained with < 7B samples
(Schuhmann et. al., 2022).

e — error level; D — data dimensional; s — smoothness.
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Good News: Low-Dimensional Data Structures
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MNIST SVHN  CIFAR-100 CelebA  CIFAR-10 MS-COCO ImageNet

— Credit: Phillip Pope et al. ICLR 2021.

Intrinsic dimension d < Ambient dimension D.
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Intrinsic dimension d < Ambient dimension D.

m Deep neural networks are adaptive in supervised learning
(Chen et. al., 2022; Liu et. al., 2023; Ji et. al., 2023).
m Sample complexity scales with d instead of D.
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Intrinsic dimension d < Ambient dimension D.

m Deep neural networks are adaptive in supervised learning
(Chen et. al., 2022; Liu et. al., 2023; Ji et. al., 2023).
m Sample complexity scales with d instead of D.

Can we establish the sample complexity of diffusion models,
free of curse of ambient dimensionality?
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However...

m Prior arts are not enough to explain diffusion models.

m Diffusion model is unsupervised learning.

m Diffusion model is a dynamic system, implemented in RP.

Generate

Manifold
(degenerate)
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Simple but Insightful: Linear Subspace

m The score function consists of two components, on-subspace
score and orthogonal score (Chen et. al., 2023).
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Simple but Insightful: Linear Subspace

m The score function consists of two components, on-subspace
score and orthogonal score (Chen et. al., 2023).
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Vlogpi(z) = AV logp?(A'x) — —Up — AAT )z
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Vlogpi(z) = AV logp?(A'x) — —Up — AAT )z

On-subspace Orthogonal
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Delve into Manifolds

Manifold

T,

Linear Subspace
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Score = On-subspace + Orthogonal ~ Score = On-manifold 4+ Orthogonal
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Delve into Manifolds

Manifold

T,

Linear Subspace
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Score = On-manifold 4+ Orthogonal

Score = On-subspace + Orthogonal
+ interaction-term

Curvature dependent!
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Score Decomposition

m Score decomposition via projection II; onto manifold:

Viogpi(x) = s (1L ()5 1) —

1 - (v — I (x)) + interaction.
_ o

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 13/17



Score Decomposition

m Score decomposition via projection II; onto manifold:

Viogpi(x) = s (1L ()5 1) —

1 - (v — I (x)) + interaction.
_ o

On-Manifold Orthogonal

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 13/17



Score Decomposition

m Score decomposition via projection II; onto manifold:

Viogpi(x) = s (1L ()5 1) —

1 - (v — I (x)) + interaction.
-

On-Manifold Orthogonal

m Orthogonal score blows up when time approaches zero.
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Score Decomposition

m Score decomposition via projection II; onto manifold:

Viogpi(z) = spq (e ()5 t) —

e (x —II;(x)) + interaction.
On-Manifold Orthogonal

m Orthogonal score blows up when time approaches zero.

m Only holds for inputs near manifold.
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Score Behavior for “Faraway” Inputs

m Score locates corrupted data to nearby neighborhoods.

m For each neighborhood, score consists of on tangent-space
score and orthogonal score.

T

x; close to manifold xp far from manifold
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Distribution Recovery

Theorem

Assume Py is supported on a d-dimensional manifold with d < D.
1. Score network (overparameterized) converges at the rate

O ([curv(,/\/l) +1] rfﬁ) .
2. Estimated distribution converges at the rate
Wl(ﬁ, P)=0 ([curv(M) +1] n‘%) )

Here s is the smoothness of F.

m Adaptive to data intrinsic structures.

m Efficient in learning data distributions.
Matches the minimax rate (Tang and Yang, 2022).
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Summary

m Score behavior.
m NN score estimation.

m Sample complexity of distribution estimation.

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 16/17



Reference

[1] Chen, M., Huang, K., Zhao, T., and Wang, M. “Score approximation, estimation
and distribution recovery of diffusion models on low-dimensional data”, In
International Conference on Machine Learning, 2023.

[2] M. Chen, H. Jiang, W. Liao and Tuo Zhao, “Nonparametric Regression on
Low-Dimensional Manifolds using Deep ReLU Networks", IMA Information and
Inference, 2021.

[3] Zhang, K., Zhang, Z., Chen, M., Takeda, Y., Wang, M., Zhao, T., and Wang, Y.
X. “Nonparametric Classification on Low Dimensional Manifolds using
Overparameterized Convolutional Residual Networks”, arXiv preprint, 2023.

[4] Liu, H., Chen, M., Zhao, T. and Liao, W. “Besov function approximation and
binary classification on low-dimensional manifolds using convolutional residual
networks”, In International Conference on Machine Learning, 2021.

Zixuan Zhang — Sample Complexity of Diffusion Models for Learning Distributions on Low Dimensional Manifolds 17/17



Thank You!'



